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Abstract. To describe the structural peculiarities in inhomogeneous media caused by a
tendency towards close packing of atoms, a formalism based on the use of Riemann geometry
methods (which, recently, were successfully applied in a description of the structures of
quasicrystals and glasses) is developed. On the basis of this formalism we find, in particular,
the criterion of stability for precipitates of the Frank–Kasper phases in metallic systems. The
nature of the ‘rhenium effect’ in W–Re alloys is discussed.

Recently, interest has been growing in the role of crystallogeometrical factors in determining
the structure of condensed matter—in particular, in those cases which are connected with the
close packing of atoms [1]. This is a whole class of metallic systems, including quasicrystals,
metallic glasses [1], small metallic clusters [2], and Frank–Kasper (FK) phases [3], whose
structures are probably determined by a tendency towards close packing of ionic spheres
with different radii. Note that the requirements of the closest local packing may contradict
the existence of long-range crystal order. This essentially distinguishes the real three-
dimensional case from the two-dimensional one, where (in the case of spheres of equal
radii) the triangle lattice has the closest packing both for the whole space and for each
of its parts, i.e. both globally and locally [4]. The classical problem of the distribution
of spheres in three-dimensional space with the closest packing has not yet been solved
rigorously (it is a part of the 18th Gilbert problem). However, it is known that spheres may
be packed locally with higher density than in fcc, hcp, and other close-packed lattices [4].
Therefore the situation of geometric frustrations arises when the structural optimum from
the point of view of the local surroundings cannot be optimum globally. The concept of
frustrations appeared to be useful in particular when considering the structure of disordered
systems [1, 5].

The cause of the existence of the geometric frustrations is that theEuclideanspace
cannot be occupied completely by regular tetrahedra (the regular tetrahedron is the structural
unit providing the closest packing of four atom groups). An elegant technique has been
proposed in reference [6] for constructing the structures of FK phases where the latter
are obtained starting from the closest packing of tetrahedrons inRiemannianspace, by
introducing the net of structural disclinations (SD) ‘decurving’ the space and then filling the
Euclidean space with the structure units that have arisen. Here we use a similar approach to
analyse the problem of the formation of a heterogeneous state (HS) in metallic alloys. Such
a state is now a subject of great interest to researchers in the field of materials science. From
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the experimental point of view, it is characterized by the peculiar diffuse x-ray scattering
corresponding in real space to the presence of relatively small clusters containing only
hundreds or even tens of atoms [7]. Examples include the so-called athermicω-phase in
some Ti- and Zr-based alloys [8] and in Cr1−xAl x [9], the σ -phase in Fe1−xCrx [10], and
precipitates of W3Re phase with A15 structure in W1−xRex [11]. Recent investigations of
Ti1−xFex alloys by means of the M̈ossbauer effect [12] have demonstrated the geometric
frustrations, i.e. differences between the type of short-range order in the local surroundings
of Fe nuclei and the type of long-range order in the crystal as a whole. A hypothesis has
been proposed in reference [13] concerning the existence of small icosahedral clusters in
these alloys.

Generally speaking, the structure of crystal phases is determined by a number of factors.
Among them, apart from the tendency towards close packing, the spatial orientation of
covalent bonds, peculiarities of the electronic structure near the Fermi surface, etc, are the
most frequently discussed. Therefore one may expect that the nature of HS may be different
for different systems. In particular, Krivoglaz [7] stressed the role of peculiar features of
the shape of the Fermi surface in the formation of HS in Ti- and Zr-based alloys. However,
this mechanism can hardly be universal, since in all of the systems with HS the electron
mean free path is short, and therefore the alloy smearing of the Fermi surface is essential.

The alternative mechanism proposed in the present work is based on considerations of
the closest packing of atoms for small atomic groups, and geometric frustrations connected
with them. As will be shown below, they may lead to the formation of HS with a
characteristic scale of the order of a few interatomic distances. The model proposed is
rather rough, and claims to describe only some of the main features of the phenomenon.
Nevertheless it serves to stress, in our opinion, the peculiar role of a factor which is important
for many real systems but which was not taken into account in previous work.

Consider precipitates of A15 phase in a bcc host (e.g. of W3Re phase in the solid solution
W1−xRex [11]) as an example of a heterogeneous state of the type under consideration,
because A15 structure is the simplest and most well-known example of a FK phase [1]. It
contains eight atoms per cell, two of them having icosahedral coordination and six of them
being surrounded by polyhedra with 14 vertices [6]. The latter may be obtained from the
regular icosahedron by introducing an edge disclination with the axis passing through its
centre and the Frank vector−2π/5. Using such a procedure, it was shown in reference [6]
that the net of SD for A15 structure consists of three mutually orthogonal sets of equidistant
parallel disclinations with their period equal to the lattice constanta. Other FK phases differ
from A15 structure only in the geometry of the SD net.

To investigate the stability of HS, one needs to generalize the approach [6]. With this
aim, we use the basic relation between the curvature tensorRijkl and the disclination density
tensorθ(c)ij [14]:

Rijkl = −εijpεklqθ (c)pq (1)

whereεijp is the unit antisymmetric tensor. It is worthwhile to note that, strictly speaking,
this relation can be exactly satisfied only in 2D space. In 3D case this is only an
approximation—but a rather good one, as was shown in [6]. In the light of equation (1), the
space curvature providing the ideal tetrahedral packing is created, in the approach of [1, 6],
by introducing partial edge disclinations with the value of Frank vector (angular deficit)
� = 7◦20′, which compensates for the deficiency of the dihedral angles in the packing of
five tetrahedra around the common edge [15]. To construct FK phases it is necessary to
‘decurve’ the space by introducing SD with the average densityθ̄ SDij = −θ(c)ij where the bar
means the average over the volume containing a large enough number of cells. Thus, in
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contrast with the approach of reference [6], where SD were introduced incurvedspace, we
introducetwo sets of disclinations inEuclideanspace, with the mean total density tensor
equal to zero. At the same time, local variation of the curvature of the lattice (i.e. the
deviation of thelocal disclination density tensor from zero) is possible, and is connected
with the elastic distortions of the bonds. The corresponding stresses are similar to those
which have been discussed in reference [5] for glasses.

Apart from the energy of elastic distortions, an electronic (‘chemical’) contribution to
the energy describing the tendency towards the closest packing of atoms also exists. If in
some places the density of SD differs from the mean density in the FK phase, and, therefore,
according to (1) the lattice appears to be locally curved, the local values of the packing
density are higher or lower than in the FK phase.

In the framework of the approach under consideration, the energy of the FK phase
counted from the energy of the ‘host’ phase withθ = 0 may be written as

E =
∫

dr f
[
θij (r)

]+ Eel (2)

wheref is the density of ‘chemical’ energy, depending on the degree of the atomic packing
which is connected with the disclination density tensorθij , andEel is the elastic energy. As
usual [16], the latter may be represented in linear elasticity theory in the following form:

Eel = 1

2

∫ ∫
dr dr′ ηνρ(r)Hνρκτ (r − r′)ηκτ (r′) (3)

whereHνρκτ is the Green tensor for internal stresses, andηνρ is the incompatibility tensor
describing the density of sources of internal stresses. According to [14], it is defined as

ηνρ = −1

2
(ερpqανq,p + θνρ + ενpqαρq,p + θρν) (4)

whereανρ is the dislocation density tensor. Separating the singular part of the Green tensor,
we may represent the energyEel as the sumEel = E(0)el +E(1)el of the energy of the distortions
in the disclination coresE(0)el and the energy of the elastic deformations outside the cores
E
(1)
el .

In the absence of dislocations, one hasηνρ = −(1/2)(θνρ+θρν). For a single disclination
with the Frank vector (0, 0, �), the tensorηνρ = −θνρ has only one non-zero comp-
onent [14]:

η33 = −�δ(ρ) (5)

whereρ = (x, y). In the case of a set of edge disclinations considered here, the tensor
θij according to (5) may be characterized by the only scalar parameterθ = Tr θij , which
is equal to the mean value of thez-component of the Frank vector at a given point. It is
proportional to the scalar curvatureRijij (see (1)). For the geometry given, the energy of
disclination cores (per unit length) may be represented as

E
(0)
el

L
= e0

∫
d2ρ θ2(ρ) (6)

wheree0 is the energy of the core of the disclination with the unit Frank vector defined
by the relatione0δ(ρ) = 1

2H3333(0). Note that, for the elastic continuum,e0 = 0, and to
describe the core energy correctly it is necessary to use the quasicontinuum model [16].

It is common practice in materials science to treat an inhomogeneous state mainly as
a multiphase state with the coexistence of regions with different crystal structures, each of
which may be stable in principle over the whole space. In this case, the inhomogeneity
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may be described in terms of elastic distortions due to the conjugation of crystal lattices on
the boundary between the precipitate and the host. To calculate the distortions, the Eshelby
model [17] is usually used, their energy appearing to be proportional to the volume of the
precipitate. It is a consequence of this fact that, in the Eshelby model, the deformationε

(0)
ij

connected with the phase transition is constant inside the precipitate. Then, according to
Eshelby, the deformationε(0)ij may be simulated by a system of dislocation loops on the
boundary of the precipitate. Since the energy of each loop is proportional to its radiusR

(equal to the precipitate radius) and the number of loops is proportional toR2, their total
energy turns out to be proportional toR3. In our model the precipitate has a type of short-
range order (e.g. icosahedral) which cannot correspond to long-range order for any bulk
crystal (periodic) phase. Therefore, in contrast with the Eshelby model, the deformation
appears to be inhomogeneous not only outside the precipitate but also inside it. It will be
shown below that, as a result, the elastic energy of the precipitate grows with the increase
of R faster thanR3, and, therefore, the stabilization of HS is possible.

The real form of the functionf (θ) in (2) is unknown. In accordance with our choice
of the zero point for the energy, we have for the host phase(θ = 0) f (0) = 0, and the
minimum of f (θ) lies at the valueθ = θ0 corresponding to the closest tetrahedral packing
in the Riemannian space [2]. We suppose for simplicity that

f = α(θ − 2θ0)θ (0< θ < θ0)

where the parameterα > 0 depends on the explicit form of the interatomic interactions.
Generally speaking, the functionf may also contain terms proportional to(∇θ)2, but in the
framework of the variational approach used below (see (8)) they do not alter the results.

To demonstrate the possibility of the formation of a heterogeneous state, we use the
direct variational approach, and explicitly construct the distributionθ(r) 6= constant, leading
to a lower value of the total energy than that of the homogeneous state. The problem may
be solved in the simplest way for the cylindrical precipitate of the close-packed phase. Let
0z be the axis andR the radius of the precipitate; then the axes of all of the disclinations
are parallel to 0z, andθ = θ(ρ) whereρ =

√
x2+ y2.

Since it is obvious that the discontinuities on the boundary between the host and the
precipitate are energetically unfavourable, we restrict ourselves to the case of their coherent
conjugation when the discontinuities are absent. In this case, the disclinations cannot be
abrupt at the boundary, and should form loops with external segments in the host. In
contrast with the homogeneous A15 phase, the ‘polarized’ distribution of disclinations is
typical in our case—that is, the uniform distribution of positive partial disclinations inside the
precipitate and a ‘cloud’ of negative disclinations outside it. From topological considerations
(the vanishing of the total Frank vector), one has∫

d2ρ θ(ρ) = 0. (7)

To evaluate the minimum of the energy (2), we use the trial function

θ(ρ) =


θ1 ρ < R

−θ1R
2

2R1+12
R < ρ < R +1

0 ρ > R +1
(8)

answering the requirement (7) automatically. Using the discontinuous trial function for the
disclination density does not lead to any difficulties, since the energy of interaction of two
disclinations vanishes when the distance between them tends to zero, and, therefore, the
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detailed shape of the interface between the core and the cloud is not too important. The
value1 describes the thickness of the ‘cloud’ and should be found from the solution of
the variational problem. In the model under consideration, the energy of elastic distortions
concentrated in the disclination cores in the cloud would play the role of a surface energy.
However, due to condition (7), the total number of disclinations in the cloud is equal to that
in the precipitate itself, and is proportional to its volume (in the 2D case,∼R2). Therefore,
in contrast with the Eshelby model case, it is impossible to separate explicitly the bulk and
surface parts in the precipitate energy.

We use forH3333(ρ − ρ ′) = H(ρ − ρ ′) the known expression [16]

H(r) = − 2µ

1− ν
ρ2

8π

[
1− ln

ρ

Rc

]
+ C (9)

corresponding to the continuum approximation in the elastically isotropic model, whereµ

is the shear modulus,ν is the Poisson ratio,Rc is the cut-off radius, of the order of the size
of a crystal, andC is a constant which does not contribute to the energyE

(1)
el for a given

geometry (the total Frank vector equals zero). To describe the energy of disclination cores
E
(0)
el correctly, one should use the quasicontinuum approximation [16]

C = − µ

2π(1− ν)k2
d

[
1+ 2γ ln kdRc

]
wherekd is the Debye wave vector, andγ is a parameter depending on the explicit form
of the phonon dispersion curves in the model.

Then the elastic energy (3) per unit length of the precipitate does not depend on the
cut-off radiusRc, and has the form

E
(1)
el

L
= θ2

1
µa4

1− ν ψ̃(R,1) (10)

where

ψ̃(R,1) = R4(1+ R)2
192a412(1+ 2R)2

[
1(513+ 2012R + 261R2+ 12R3)

−12R2(1+ R)2 ln

(
1+ R
R

)]
.

Minimizing the function ψ̃(R,1) with respect to1 gives the dependence of the cloud
thickness1 = 1(R). As a result, the total energy may be represented in the following
form:

E

L
= πR2αp(θ1− 2θ̃0)θ1+ θ2

1
µa4

1− ν ψ(R) (11)

whereψ(R) = ψ̃(R,1(R)), and θ̃0 = θ0/p, p = 1+ 2e0/α. The minimum of energy (11)
corresponds to the disclination density

θ1 = θ̃0

1+ ψ(R)/κR2
(12)

where the precipitate radiusR is found from the equation

R
dψ(R)

dR
= 2(2ψ(R)+ κR2). (13)

Here

κ = δf (1− ν)πp
µa4θ2

0

(14)
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and the valueδf = αθ2
0 describes the chemical energy gain (per unit volume) for the ideal

tetrahedral packing.

κ0.2 0.4 0.6

0

1

2

3

4

θ1

R

ψ

Figure 1. The dependence of the equilibrium values of the precipitate radiusR (in units of
a), the disclination densityθ1 (in units of θ̃0), and the value of the elastic change energyψ in
equation (11) on the parameterκ defined by equation (14).

As follows from equation (13), the precipitate radiusR depends on the parameterκ
characterizing the ratio of the chemical contribution to the elastic one. According to (14),
its value varies from 0.1 to 1 forδf ≈ 0.01–0.1 eV per atom. Direct calculations show
that, in all of these limits of the variation ofκ, the functionψ(R) is almost constant for
R < 2a and increases sharply forR > 3a. On these grounds, the equilibrium value ofR
grows slowly with the increase ofκ (see figure 1). Forκ < 0.1, the continuum approach
under consideration does not hold, becauseR < a. For this range of values ofκ, the
disclination densityθ1 determined by equation (12) is less than the minimal possible value
corresponding to one disclination with the value of the Frank vector of 7◦20′ per precipitate.

r, R
0 1 2 3 4 5

ε k
k,

 <
ε k

k>

0

20

40

60

Figure 2. The distribution of the dilatationεkk in the precipitate (solid line) on the polar
coordinater (R = 4, 1 = 1), and the dependence of theaveragedilatation 〈εkk〉 on the
precipitate radiusR (dashed line) in units ofθ1(1− 2ν)/(2π(1− ν)).

The spatial distribution of the dilatation obtained by numerical integration is shown
in figure 2. It can be seen that the internal part of the precipitate is expanded, and
the dilatationεll vanishes sharply at the boundary. The mean value in the precipitate
〈εll〉 increases approximately linearly with the precipitate radius. This demonstrates the



Close packing of atoms 7843

qualitative difference between the model under consideration and the Eshelby model. Since
the average deformation increases with the increase ofR, the elastic energy grows faster
thanR2 in the 2D case (or thanR3 for spherical precipitates).

Putting the equilibrium values ofθ1 andR in equation (11), one obtains the expressions
for the energy change at the formation of the precipitate:

E

L
= −δf πR2θ1

θ0
= − θ0θ

2
1

θ0− θ1

µa4ψ(R)

1− ν < 0. (15)

Thus, in the model under consideration, the precipitates are stable, and the heterogeneous
state has lower energy than the host lattice. According to the dependence ofθ1 on R, its
value (12), generally speaking, does not coincide with any of the values which correspond
to homogeneous FK phases.

Thus, we have shown that for certain ratios between ‘chemical’ and elastic properties
of the media (κ > 0.1) the heterogeneous state may be energetically favourable, owing
to the crystallogeometrical factors (the tendency towards the closest local packing). It is
worthwhile to stress again the most important features of this state in the framework of the
model under consideration:

(i) the sizes of the precipitates are of the order of few lattice constants;
(ii) the structure of the precipitates is distorted in comparison with the structures of FK

phases in an infinite crystal;
(iii) the precipitates are surrounded by a cloud of the distorted host lattice, with a

thickness of the order of the sizes of the precipitates.

The existence of this cloud has an obvious sense: since it is impossible to fill the whole
space with regular tetrahedra, an attempt to realize such a filling locally in some part of
the space results inevitably in the appearance of voids at the boundary. Introducing the
external segments of disclination loops leads to the elimination of these voids, and coherent
conjugation of the precipitate with the host surroundings.

In the specific case where the host phase is bcc, a sharp increase of the solubility of light
interstitial impurities is one of the characteristic features of the mechanism of the formation
of HS under consideration. It is connected with the presence of large tetrahedral voids in
close-packed structures and their absence in a bcc lattice. This feature, together with the
change of the type of short-range order and the appearance of elastic distortions, can help
in the identification of this kind of HS experimentally.

The results obtained here may explain some important features of the so-called ‘rhenium
effect’ (the improvement of the ductility of W and Mo upon doping with Re). According
to reference [11], the increase of the solubility of interstitial impurities connected with the
appearance of the precipitates of the FK phases—in particular, W3Re—is the key feature in
this phenomenon. The results presented here allow us, on the one hand, to understand the
causes of the appearance of the precipitates, and, on the other hand, to identify the specific
mechanism of their influence on the solubility of interstitial impurities. Indeed, considerable
dilatation in the cloud surrounding the precipitate may lead to the substantial energy gain
at the transfer of the interstitial atom from the host to the shell. This may prevent the
appearance of the carbide precipitates or impurity segregation at the intergrain boundaries.

Note in conclusion that the transition from the two-dimensional case considered here to
the three-dimensional one is not trivial, since, in ‘dressing’ the spherical precipitate with the
cloud of compensated defects, we cannot restrict ourselves to disclinations only, and it is
necessary to introduce the density of disclination loops as an additional variable. However,
the results presented here seem to be sufficient for demonstrating the instability of the
homogeneous state under certain conditions.
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Finally, it is worthwhile to note that the present work shows the interconnection of some
specific facts known in materials science with non-trivial properties of three-dimensional
space, and, therefore, demonstrates the general physical meaning of these facts.
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